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Abstract— Recently, medical image analysis is considered an essential step in the early detection, diagnosis, and 
treatment of liver disorders. After diagnosis, medical image analysis methods are used within the treatment 
course to track the recovery process. In addition, medical imaging analysis techniques are used to build a 3D 
computer model for body organs. This will help in reducing surgical medical errors by providing tools for 
advanced surgical aids, preoperative planning, and rehearsal. This paper presents a comprehensive review of the 
current work on liver disorders’ analysis using medical image analysis techniques. It discusses the existing 
medical imaging modalities, their characteristics, advantages and drawbacks. It also describes the recent liver 
lesions segmentation methods and makes a comparison between them in terms of their complexity, speed, noise 
sensitivity, advantages, and limitations. Moreover, this paper elucidates liver computer-aided diagnosis (CAD) 
systems and shows how they are used in accurate diagnosis of different liver disorders. On top of that, challenges 
facing the medical images’ analysis are introduced and future research trends in this area are discussed and 
analyzed. 
 
Keywords— Liver disorders; Medical image analysis; Computer-aided diagnosis; Liver tumour segmentation; 
Lesions classification; Magnetic resonance imaging; Positron emission tomography.   
  

1. INTRODUCTION  

Medical imaging modalities are techniques used to create an image for internal body 

organs and tissues. Acquired images are clinically used to pre-diagnose several diseases such 

as liver tumor. To increase the efficiency of acquired images for better diagnosis and 

treatment, medical image processing techniques are used. For soft tissues such as the liver, the 

most used modality is computed tomography (CT). CT modality is considered the best choice 

to detect and classify liver lesions into benign or malignant. This is because of its ability to 

acquire an image in a relatively short time; i.e., 0.4 s [1]. Reducing acquisition time can be 

beneficial in minimizing resulting noise from body movement or breathing; i.e., high signal to 

noise ratio. 

On the other hand, the liver is responsible of at least 500 essential functions for the 

human body. According to the American Cancer Society's (ACS), around 42030 adults were 

diagnosed with primary liver cancer in the US in 2019 divided as 29480 men and 12550 

women [2]. The morbidity of liver cancer has increased three times when compared to 1980. 

Through the past decade, the percentage increased by about 3%. Liver cancer is expected to be 

responsible for about 31780 deaths (21600 men and 10180 women). It is considered the fifth 

most common death caused by cancer in men, and the seventh in women [2]. 

Chronic liver disease (CLD) development is identified in many phases. Each has its 

physiological and pathological features. The early phase of liver cancer starts when increased 

fats in hepatocytes appear. This phase is called fatty liver infiltration or steatosis [3]. In the 
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liver damage phase, fibrosis appears. The evolution of fibrosis relies on the source of hepatic 

failures such as chronic hepatitis. The late phase of CLD is cirrhosis, and it refers to a 

deficiency of liver functionality due to long-term damage. Cirrhosis is classified into two 

categories, namely decompensated and compensated cirrhosis. Compensated cirrhosis is 

identified by an asymptomatic phase which is succeeded in the liver dysfunction phase, 

called decompensated cirrhosis. When cirrhosis reaches late phases, the patient is diagnosed 

with primary liver cancer or hepatocellular carcinoma (HCC). 

The staging and detection of CLD are done using medical imaging modalities with the 

aid of artificial intelligence (AI) systems called computer-aided diagnosis (CAD) systems. 

CAD systems are computer methods that extract hidden knowledge from acquired medical 

images to enhance the accuracy of disease diagnosis. For liver cancer diagnosis, CT imaging 

modality is used. CAD has been considered one of the hottest research topics in the medical 

field [3]. CAD liver system is mainly concerned with developing methodologies and 

techniques for enhancing the quality of medical images, improving the diagnosis accuracy, 

and detecting or segmenting liver lesions. 

The typical CAD system consists of five stages. The first stage is image acquisition 

using one of the medical imaging modalities such as CT scan. The second stage is the pre-

processing stage which is mainly concerned with enhancing the quality of the acquired 

image by enhancing the contrast. In the third stage, features are extracted. The features 

extraction stage is considered an essential stage of the CAD system because the accuracy of 

lesions detection is built upon it. The lesions identification process is the fourth stage of the 

CAD system and is referred to as the lesion segmentation stage. Liver lesions refer to any 

abnormal structure in the liver. An injury or disease causes these lesions. The most common 

method to identify liver lesions is to calculate pixel intensity differences for different liver 

regions in the CT image. In the CAD system, the segmentation stage means the detection of 

lesion regions from the liver regions based on the extracted features [4]. However, the 

segmentation stage is very tricky and can be done either manually or automatically. The task 

of manually segmenting CT images is considered complex and consumes much time. 

Although automatic segmentation is supposed to solve manual segmentation problems, it 

stills a very challenging task [5]. This is mainly because of many reasons including a CT scan 

of the liver is a combination of 150 cross-sectional images (i.e., slices), unlimited shaped of 

liver lesions, and sometimes the intensity between lesions and liver tissues are quite similar. 

Automatic segmentation methods are built on the top of a common method such as region-

growth, thresholding, texture-based, Bayesian, or entropy-based techniques [6]. The final 

stage of a liver CAD system is the diagnosis stage at which lesions are classified into benign 

or malignant. Generally, the classification process is implemented by passing the features of 

the segmented lesion to a binary classifier such as support vector machines (SVM) [7]. 

This paper discusses different AI liver segmentation and diagnosis techniques. Section 

2 discusses the existing medical imaging modalities. Section 3 describes liver segmentation 

methods. Liver CAD systems are discussed in section 4. Section 5 elucidates existing research 

challenges. Future research trends are presented in section 6. Conclusions are covered in 

section 7. 
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2. MEDICAL IMAGING MODALITIES  

Medical imagining modalities refer to the different acquisition devices being used to 

capture an image for human body organs or tissues. The imaging modality selection depends 

on what disease or abnormalities to be imaged and on the area where the disease or 

abnormalities is caused. The primary imaging modalities used in diagnosing liver are the CT, 

positron emission tomography (PET), magnetic resonance imaging (MRI), and ultrasound. 

2.1. CT  

CT scan is an imaging method that uses X-ray beams, and by rotating X-ray source 

around the body, it produces cross-sectional (i.e., slices) of the imaged body organ. After the 

collection of sufficient number of successive slices, the CT scanner computer forms a 3D 

image of the body by stacking together collected slices. Unlike X-ray scanners, CT scanners 

use detectors’ arrays instead of single X-ray film. The position of the detectors depends on 

the generation of the used CT scanner. Usually, they are placed in the opposite direction to 

the beam source as shown in Fig. 1. CT imaging modality is the best choice in case of 

detecting any possible lesions in soft tissues such as the brain, heart, liver, and lung [8]. 
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Fig. 1. The working theory of the CT scanner, the continuous rotation of the detectors, allows the collection of full 

projection data sets for the CT subsystems. 

2.1.1. Liver Lesions CT Scan 

The detection of liver lesions in the CT images depends on the differentiation between 

pixels intensity in lesions and normal liver regions. After the completion of lesions’ 

detection, lesions are classified based on some characteristics. If the lesion is not growing and 

tending to have sharp boundaries and homogeneous structure with intensity colors different 

from liver intensity colors, then it is classified as a cyst as shown in Fig. 2. If the lesion is 

growing peripherally or nodular, then it could be a haemangioma. Haemangioma is 

considered the most common liver tumor. If the lesion is neither haemangioma nor cyst, then 

the lesion is further classified into either hyper-vascular or hypo-vascular lesions. Further 

classification is generally depends on several factors such as lesion growth patterns, patient 

history, and pathological features; i.e., presence of calcifications, fat, blood pressure, cystic or 

fibrotic components [9]. 
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Fig. 2. Hepatic cyst lesion on contrast-enhanced CT scan [10]. 

2.2. PET 

PET is used to evaluate the physical state and functionality of body tissues. PET scan 

mainly depends on radioactive tracer (drug) and PET scanner. Tracer drugs may be inhaled, 

injected, or swallowed depending on the tissues to be imaged. As the tracer is traveling 

through the body, it is getting collected by body tissues with higher chemical activity levels. 

Chemical activities are shown as “hot spots” for higher activities or “cold spots” for lower 

activities. PET scanner detects radiation that is emitted by a radiotracer. Compared to 

healthy cells, lesion cells are always very active, so a radiotracer made them bright in the 

PET image as shown in Fig. 3. The analysis of liver lesions “hot spots” is considered a 

difficult task. This is mainly because liver size may attenuate the lesion signal. To deal with 

this problem, signal amplification and quantification methods are used to enhance the 

interpretation of hepatic lesions. The lesion-to-benign tissue (L/B ratio) is used to analyze 

PET scans [11]. PET scans are mostly used to evaluate neurological diseases, cancers, and 

heart diseases [12]. PET scans are usually used combined with CT or MRI scans to help in 

more effective diagnosis. 

2.2.1. Liver Lesion PET Scan 

PET scan can be used to diagnose liver lesions when lesions are either lymphoma or 

metastases. Primary hepatic lymphoma (PHL) is a very rare case. Even though, it has been 

delineated in the hepatitis C virus (HCV) positive patients. Typically, it appears as a single 

hepatic mass. However, multiple masses with diffuse shapes are also delineated. PHL is 

represented as homogenously hypoechoic lesions on an ultrasound scan. On CT scan, PHL is 

shown as a hypoattenuating lesion (i.e., low-intensity area indicating lesion location). PHL 

patterns enhancement is a variant task since 50% of PHL lesions cannot be enhanced, 33% 

may have patchy enhancement, and 16% may have ring enhancement. This will result in a 

misdiagnosis of PHL lesions and they will be diagnosed either as HCC or metastases. Since 

PHL absorbed radiotracer drug is emitted in PET scan, PET is considered superior for 

analyzing PHL. Since PHL disease is considered a rare disease, the number of researchers 

made to evaluate PHL PET scans is limited [13].  
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Fig. 3. A liver lesion: a) lesion is invisible on CT scan; b) lesion is emitting on PET scan [14]. 

2.3. MRI 

MRI is a non-invasive imaging modality that produces a 3D detailed anatomical image 

of body organs and tissues. MRI uses a magnetic field to realign protons within that field. In 

other words, MRI detects the change in proton rotational direction. When a radio frequency 

pulse passes through the human body, the atom’s protons are energized and spin out of their 

equilibrium state. When the magnetic field is turned off, protons realign to their original 

equilibrium state. This realignment produces a radiofrequency field (i.e., energy), which is 

later detected by MRI sensors. The consumed time during the realignment phase and the 

strength of radio frequency field power emitted are relying on the surrounding medium and 

the chemical nature of the atoms. Radiologists use the different magnetic characteristics of 

tissues to distinguish between lesions and typical regions [15]. MRI scans are often used to 

detect and diagnose several diseases such as abnormal tissues in blood vessels and chest and 

abdomen injuries. 

2.3.1. Liver Lesion MRI Scan  

Hepatic cysts lesions (HCL) - even those lesions with no pathological significance -  can 

be easily detected using an ultrasound scan. However, in some rare states, an MRI scan is 

used as an additional scan to detect non-complicated hepatic cysts. HCL evaluation can 

become complex and complicated by the presence of abscesses, haemorrhage, hematomas 

cystadenomas, and cystadenocarcinomas. HCL can be benign or malignant. If HCL is 

complicated by the presence of severe haemorrhage and severe hematomas, diagnosis and 

detection can be easily made using an MRI image with no enhancement [16]. The most 

difficult task is to distinguish between HCL lesions caused by cystadenomas or 

cystadenocarcinomas. This is because they cannot be detected using an un-enhanced image, 

and the lesions may not be segmented as shown in Fig. 4. The likelihood of malignant HCL 

increases when the thickness of the lesion increases. This can only be visible when an 

enhanced MRI scan is used. 
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Fig. 4. An MRI scan for liver lesions: a) pre-MRI scan (lesion is invisible on un-enhanced MRI scan);  
b) post-MRI scan (lesion is visible on enhanced MRI scan) [17]. 

2.4. Ultrasound 

Ultrasound or ultrasonography (US) is a non-invasive diagnostic technique to image 

body tissues and organs. US imaging modality uses transducers or probes to produce US  

waves above 20 kHz and collects reflected US echoes. When reflected echoes hit the 

transducer, an electrical signal is generated. As the US beam penetrates a medium, the beam 

is attenuated or loses energy. As a beam penetrates tissue, some of the beams are reflected, 

refracted, or absorbed as heat generation. The amount of penetration will determine the 

depth of the scanning area. Penetration is directly related to wavelength. Smaller 

wavelengths are more easily reflected or refracted in the superficial tissues than longer 

wavelengths. As the wavelength is increased (or frequency decreased), the US will penetrate 

deeper. As the wavelength is decreased (or frequency is increased), the US beam will have a 

shallower penetration. Low-frequency US has superior penetration. Resolution and 

penetration are the primary criteria for the image quality of diagnostic US. In theory - and 

usually in practice - the maximum depth of imaging in a tissue increases as the power 

(pressure) increases. Alternatively, at a particular effective penetration, an increased power 

may be used to allow a higher US frequency for higher resolution and tissue contrast. The US 

scanner then collects this signal. The speed of US waves and the time consumed until echo 

reflection are used by the scanner to calculate the distance from the transducer to the organ’s 

edges. Calculated distances are then used to produce a 2D US image of the organs [18]. 

Transducers are usually placed on the skin. However, produced image quality can be 

optimized when transducers are placed inside the body via the gastrointestinal tract, vagina, 

or blood vessels. 

2.4.1. Liver Lesion US Scan  

US scan is mostly used to detect liver fibrosis. When US waves pass through the liver, 

liver tissues move. This movement is very clear in the center of the liver. The resulted 

electricity of wave reflection is calculated to distinguish between normal liver tissues and 

fibrotic lesion tissues [19]. This is because fibrotic lesions respond more to waves (i.e., move 

to a greater degree than the rest of liver tissue). Hence, it produces larger electrical signals. 

Fig. 5 illustrates US scans for different types of tumors. 
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(a) (b)

(c) (d)  
Fig. 5. US scans for different liver diseases: a) normal; b) cyst; c) benign; d) metastases [19]. 

2.5. Comparison between Different Liver Imaging Modalities 

Table 1 compares mostly used liver imaging modalities in terms of their cost, 

complexity, sensitivity, advantages, and limitations. 

 

Table 1. The imaging modalities for liver disorders. 

Criteria CT US PET MRI 

Cost Cheap Cheap High High 

Complexity Simple Simple Complex Complex 

Sensitivity Low sensitivity Low specify Low sensitivity - 

Advantages 

- Produces a 3D 

image of a liver 

- Can identify 

liver lesions size 

- Real-time 

monitoring 

- Absence of 

ionizing 

radiations 

- Real-time liver 

vascularity 

visualization 

- Wide 

anatomical 

coverage 

- Functional 

imagining 

- High lesion-to-

liver contrast 

- Absence of 

ionizing 

radiations 

- High spatial 

resolution 

Limitations 

- High radiation 

dose 

- Lesions with 

size < 1 cm 

cannot be 

identified. 

- High operator 

and patient 

dependency 

- Lesions with size 

< 1 cm cannot be 

identified. 

- Low specificity. 

- Low spatial 

resolution 

- False positive 

uptake in   

normal 

structure or 

benign 

tumours. 

- High cost 

- Time-consuming 

method 

- Requires that the 

patient hold the 

breath for a 

relatively long 

time. 
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3. LIVER LESION SEGMENTATION  

Segmentation aims to contour the desired region of interest (i.e., liver lesions). 

Segmentation of liver lesions is required to analyze lesions accurately and thus, accurately 

identify the staging and evaluation of the lesions. Segmentation methods can be classified - 

based on the automation level - into two classes: fully automatic and semi-automatic. Liver 

segmentation methods are built on the top of basic segmentation methods such as region-

based/contour-based segmentation methods, thresholding methods, model-based approach, 

level-based, and graph cut methods. Lesion segmentation is usually implemented in five 

steps: i) identification of liver region, ii) noise reduction to enhance lesion to liver contrast, 

iii) identification of lesion seed point to identify other points with the same intensity which 

will be labeled as the lesion, iv) lesion detection improvement by the usage of localized 

contouring method, and v) lesions are rendered in a 3D space to display position, volume, 

and growth of the lesions within the liver. Lesion volume is calculated by counting the 

number of comprised voxels in the lesion area [20]. The following subsections discuss the 

liver segmentation methods. 

3.1. Region-Based Segmentation 

Region-based segmentation methods always depend on the intensity values between 

neighbor pixels (i.e., group pixels with similar intensity values into a region). This method 

archives good results with contrast-enhanced images.  Region-based methods are divided 

into two classes: region growing and region splitting. Region growing methods start with 

seed points and pixels with similar values as seed are grouped. Region growing continues 

iteratively until all homogeneous neighbors as the seed points are obtained. The limitations 

of this method are the seed point choice is a dependable user process, and the method will be 

inefficient in the case of heterogeneous regions.  

The basic requirements of any region growing method are the following:                        

i) segmentation process stops when each pixel belongs to a region, ii) pixels in the same 

region must be connected, iii) generated regions must be unique, iv) properties and criteria 

of the region must be satisfied by the pixels to be segmented in that region, and v) the 

properties of each region must be unique. 

Evaluation of region splitting algorithms was built on larger sets of pixels rather than 

single pixels (i.e., seed point). Zhou et al. [21] provided a performance benchmark study for 

three semi-automatic liver lesions-segmentation methods. Those three methods involved 

region growing with knowledge-based rules, propagational learning for lesion pixels 

classification, and region growing based on the Bayesian rules. The results showed the 

superiority of the first two methods over the third. Pohle et al. [22] proposed an adaptive 

region growing technique. This method had the advantage of being able to acquire 

knowledge about the homogeneity criterion from segmented region characteristics 

automatically. However, this method was inefficient if the segmented region is 

heterogeneous, and it led to under segmentation.  

Ruskó et al. [23] proposed the choice of seed region based on the density of pixels in 

the CT gray level image. This was advantageous in dealing with heterogeneous regions’ 

problems. The liver region was identified with the help of anatomical characteristics of the 

liver. Then, they applied their enhanced region growing method version to segment the 
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image. Their results showed under-segmentation near the right lung lobe which had been 

solved using some post-processing techniques. Their method was a high-speed method 

when compared to other region-growing methods. However, it suffered from complexity 

and resulted in under-segmentation when the liver intensity level was heterogeneous due to 

the presence of a huge lesion.   

Kumar et al. [24] proposed  a method to use the largest connected region centroid as 

the initial seed point, and a gaussian model determines the region growing threshold. Post-

processing techniques were implemented to deal with the liver under segmentation by fixing 

gaps and connection with other neighborhood tissues. This method showed lower time 

consuming with reasonable outputs. Huang et al. [25] proposed to transform the liver CT 

scan image into a projection plane using the ray casting algorithm, and then use region 

growing for segmentation. 

Kuar et al. [26] proposed an algorithm that used k- means clustering with region 

growing method to enhance liver cyst area segmentation. K-mean clustering was unable to 

separate cysts cluster from the rest of the image clusters. To deal with this problem, region 

growing was used to further segment cyst lesions based on their morphological 

characteristics. This method proofed its superiority over the standard k-means method.  

3.2. Threshold Based Methods 

Threshold-based segmentation algorithms were used for rough segmentation and 

identifying lesions regions or seed points as pre-processing. All threshold-based methods 

had the same implementation as following: i) contrast enhancement of the initial input 

image, ii) liver and lesion region identification using intensity histogram analysis and 

knowledge-based constraints, or iii) rough segmentation of liver lesion using threshold 

values. The simplest formula for thresholding segmentation was as follows: when pixel         

p (x, y)  value is greater than a threshold 𝝉, set the pixel p (x, y) to 0, this means for each pixel 

in the segmented image, if the pixel was greater than a specified threshold, then pixel value 

will be 0. For multilevel thresholding, more than one segmentation rule with multiple 

thresholds was used as following: whenever the pixel p (x, y) value is less than a threshold 

𝝉𝟏, then set p (x, y) value to 255, also when pixel p (x, y) value is greater than or equals 

threshold 𝝉𝟏 but less than threshold 𝝉𝟐, then set p (x, y) value to 128. If no condition is 

validated, p (x, y) is 0. Multilevel thresholding segmentation was considered complex and 

hard to be implanted when compared to a single threshold approach. 

In general, threshold-based segmentation showed poor performance with parenchyma 

lesions. However, it showed good performance when the contrast between the lesion and 

surrounding normal tissues is high. Abdel- Messiah et al. [27] proposed an enhanced 

threshold-based method for liver lesion segmentation on CT scans. They first enhanced the 

gray level intensity contrast of the input image. The threshold ability to segment lesion 

region out of liver tissues was enhanced by increasing lesion to liver contrast. The contrast 

was increased by adding an enhanced image to itself. This method suffered from being noise 

sensitive. Accuracy was enhanced, and false detections were reduced through roundness 

and neighboring slices information. 
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3.3. Graph Cut Methods 

Graph cut methods re-represent the original image using an undirected weighted 

graph. Each image pixel is represented using a graph node. Two adjacent pixels are 

connected with an edge. Edge’s weights represent the gray level similarity between pixels.  

The segmentation process here means to cut out a subgraph where the intensity level’s 

similarity is the maximum. Recently, graph cut methods had the advantages of having 

unique implementation steps (i.e., not iterative), and it could maximize the minimization of 

some energy function. The energy function was calculated as: 

𝛼 (1 − 𝛿 (𝑙𝑖 − 𝑙𝑖𝑛𝑡𝑖𝑎𝑙 𝑖) + 𝛽 ∑ (1 − 𝛿 (𝑙𝑖, (𝑖))), (𝑖)                                                                                         (1) 

where 𝛼 refers to the change factor for each pixel label, 𝛽 refers to the change in pixel label 

and neighboring pixels, N(i) refers to a neighborhood of pixel i, and δ is the Kronecker delta 

function. The graph cut algorithm is classified under a semi-automatic segmentation 

approach. This because the selection of the seed point was full- dependable upon the user. 

The easiest application of graph cut in liver segmentation was when vessels or lesions 

were segmented from the homogeneous background (i.e., liver). On the other hand, when 

the graph cut was implemented to segment liver parenchyma where the background was 

heterogeneous, the selection of seed point was quite difficult. For this reason, Yang et al. [28] 

proposed a method to automate seed point selection. They implemented CT liver lesions 

rough segmentation by utilizing mathematical morphology with fast marching. However, 

this method showed poor performance in segmentation parenchyma lesions when other 

imaging modalities were used. 

Fang et al. [29] proposed an enhanced graph cut to segment lesions from enhanced 

MRI images. This method was built upon the optimal tree metrics approach. Primarily, the 

feature set was generated based on the multi-phase contrast-enhanced MRI image. Spatial-

temporal MRI information was extracted using color-space mapping. Then, optimal global 

labeling was obtained using tree-metrics graph cut algorithms. Classification of lesions was 

simplified by applying the tree-pruning method. The tree pruning method has the following 

three elements as inputs: i) MRI enhanced image, ii) original classifier labels, and                  

iii) smoothness factor λ ≥ 0. Then, a new reduced label set was produced with agglomerative 

classification based on the extracted dynamic features. This method had the advantage of 

consuming less computational power by avoiding iterations, and of its ability to be applied 

to different imaging modalities with different organs. 

3.4. Texture Based Methods 

Unlike other segmentation algorithms, existing texture-based algorithms focused on 

segmenting objects based on their textural characteristics rather than its boundaries. The 

basic flow of all texture-based methods is: i) extraction of textural features of the object,        

ii) features classification into desired texture and undesired textural features, and                 

iii) smoothing of the segmented region using post-processing techniques. Different methods 

for liver/tumor segmentation with different texture features were proposed. Huang et al. 

[30] proposed the usage of neighbor pixels mean, variance, Law’s texture, Unser’s sum, and 

difference histograms as the main features to segment lesions from CT scans. 
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Ji et al. [31] proposed the usage of structure and context properties to segment lesions 

from surrounding liver tissues in 3D CT scans. This method had the advantages of:                

i) automatically acquire implicit lesions shape characteristics using the autocontext model 

(ACM) method, ii) good segmentation performance due to its ability to combine multiple 

atlas scans which enhanced segmentation accuracy, iii) classification improvement by the 

usage of enhanced mean shift method, and iv) segmentation time reduction. However, this 

method required ground truth to be specified manually by the user.  

Danciu et al. [32] proposed the usage of lesion volume, diameter and size to region 

ratio as the main texture features. This segmentation method selected lesions features based 

on the concept of minimum redundancy/maximum relevance. This helped in the selection of 

unique textural features with lower redundancy as possible. Also, the dependency of 

extracted features was maximized. Luo et al. [33] used discrete wavelet transform (DWT) on 

CT image and then used transform coefficients as a basis to identify characteristics of the 

liver and its surrounding tissues. Luo et al. [34] proposed a method that put both global and 

local texture into consideration. They enhanced lesion segmentation by using anatomical, 

morphological, and some high order statistical texture features which then passed to the 

SVM classifier. 

3.5. Comparison of Liver/Lesion Segmentation Methods 

Table 2 summarizes previously discussed liver segmentation research work - discussed 

in sections 3.1, 3.2, 3.3 and 3.4 - in terms of methods contributions, advantages, limitations, 

and results. Table 3 compares mostly used liver lesions (i.e., tumors) segmentation methods 

in terms of methods complexity, speed, noise sensitivity, advantages, and limitations. 

 
Table 2. Liver segmentation methods’ related work. 

Author(s) Contribution       Advantages Limitations Results 

Zhou et 

al. 

[21] 

Performance 

benchmark study 

for three semi- 

automatic liver 

lesions in 

segmentation 

methods. 

Good quantitative 

results 

- Over or under 

segmentation 

- High user 

dependency 

Lesions contour 

with subtle 

details 

Pohle et 

al. 

[22] 

An adaptive 

region growing 

technique. 

This method had 

the advantage of 

being able to 

acquire knowledge 

about the 

homogeneity 

criterion from 

segmented region 

characteristics 

automatically. 

- Inefficient if the 

segmented 

region is 

heterogeneous 

- Under 

segmentation. 

- Reliable if the 

target region is 

homogeneous 

- Simple but 

robust, hence 

produce 

reasonable 

segmentation 

quality even 

when some 

model  rules 

were not met. 
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Table 2. Liver segmentation methods’ related work -Continued(1) 

Author(s) Contribution Advantages Limitations Results 

Ruskó et al. 

[23] 

A technique to 

choose a seed 

region depending 

on the density of 

pixels in the CT 

scan image. 

- This method 

was able to deal 

with the 

heterogeneous 

region's 

problem. 

- Low time 

consumption 

- Cannot deal with 

large liver lesions 

This method suffered 

from complexity and 

resulted in under-

segmentation when 

liver intensity level 

was heterogeneous 

due to the presence of 

a huge lesion. 

Kumar et al. 

[24] 

Used largest 

connected region 

centroid as the 

starting seed 

point and the 

threshold is 

determined by a 

Gaussian model. 

Low time 

consumption 

- It can deal with 

the liver under 

segmentation 

by fixing gaps 

and connecting 

with other 

neighbourhood 

tissues. 

The average error 

for the segmented 

region was 1.93%. 

Huang et al. 

[25] 

Enhanced lesions 

localization by 

transforming the 

liver CT scan 

image into a 

projection plane 

using a ray 

casting algorithm 

and then use 

region growing 

for segmentation. 

No over 

segmentation 

- Threshold 

choice. 

- Over-

segmentation 

and segmentation 

shortfalls. 

Segmentation 

accuracy is not very 

precise. 

Kuar et al.  

[26] 

Enhanced liver 

cyst area 

segmentation by 

combining 

k- means 

clustering with 

region growing 

method. 

Low 

complexity 

Implementation 

quality was 

dependent on the 

choice of cluster's 

initial centroids. 

This method proved 

its superiority over 

the standard k-

means method (i.e., 

standard k-mean 

clustering was 

unable to separate 

cysts cluster from 

the rest of image 

clusters). 

Abdel-

Massieh et 

al. [27] 

An enhanced 

threshold-based 

method for liver 

lesion 

segmentation on 

CT scans. 

Can segment 

lesions very 

accurately in 

case of a 

single large 

lesion. 

This method 

suffered from 

being noise 

sensitive. 

The sensitivity score 

was 79%. 
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Table 2. Liver segmentation methods’ related work -Continued(2) 

Author(s) Contribution Advantages Limitations Results 

Yang et al. 

[28] 

A method to 

automate seed 

point selection. 

Accurate lesions 

segmentation from 

CT scans. 

Poor 

performance in 

segmentation 

parenchyma 

lesions when 

other imaging 

modalities were 

used. 

Experiments have 

been executed on 

human liver CT 

data and obtain 

results in less time 

compared to the 

implementation 

with CPU. 

Fang et al. 

[29] 

An enhanced 

graph cut to 

segment lesions 

from enhanced 

MRI images. 

- Low computational 

cost. 

- Achieved global 

optimization in 

labelling tree 

metrics. 

- Not iterative. 

- The tree 

structure 

was not 

optimal. 

- Smoothing 

parameter 

choice. 

Enhanced 

performance 

when compared 

to existing 

approaches in 

terms of lesions 

visualization and 

size 

measurement. 

Huang et al. 

[30] 

Segmented liver 

lesions based on 

statistical features 

such as pixels 

mean, variance, 

Law's texture, 

Unser's sum and 

difference 

histograms. 

No prior knowledge 

about liver texture, 

place, or orientation 

was needed. 

It can not 

segment large 

lesions. 

Reasonable 

segmentation 

quality for liver 

parenchyma 

lesions. 

Ji et al.  

[31] 

Used lesions 

structure, shapes, 

and context 

properties to 

segment lesions 

from surrounding 

tissues in three 

dimensions CT 

scans. 

- Automatically 

acquire implicit 

lesions shape 

characteristics using 

the ACM method. 

- Good segmentation 

performance due to 

its ability to 

combine multiple 

atlas scans, which 

enhanced 

segmentation 

accuracy. 

- Classification 

improvement by 

the usage of 

enhanced mean 

shift method. 

- Segmentation time 

reduction. 

This method 

required 

ground truth 

to be specified 

manually by 

the user. 

Results were 

similar to results 

reported in liver 

segmentation 

benchmark work 

with an average 

surface of 1.5 cm 

and average 

volume overlap 

error of 8.3%. 
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Table 2. Liver segmentation methods’ related work -Continued(3) 

Author Contribution Advantages Limitations Results 

Danciu et al. 

[32] 

Used lesion 

volume, 

diameter and 

size to region 

ratio as the main 

texture features. 

Selected features were 

unique textural features 

with lower redundancy 

and high dependency. 

May result in 

over or under 

segmentation. 

Results showed 

noticeable feature 

reduction and 

lower 

computational 

overhead. 

Luo et al. 

[33] 

Used DWT 

transform on CT 

image and then 

used transform 

coefficients as a 

basis to identify 

characteristics of 

the liver and its 

surrounding 

tissues. 

- DWT coefficients 

resulted in satisfactory 

classification 

performance with 

SVMs. 

- Liver volume was 

accurately contoured, 

by combining

structural features 

pixel-wised SVM. 

High time 

consumption. 

Results showed 

sensitivity as 

94.1% for 

untrained data 

set, and 96.3% 

for partially 

trained data set. 

 
 

Table 3. A comparison between the lesion segmentation methods. 

Criteria 
Fuzzy C Means 

(FCM) 
Thresholding 

Watershed  

(texture-based) 
Region growing 

Complexity Simple Simple Moderate Complex 

Speed Fast Fast Moderate Slow 

Sensitivity 

to noise 
Sensitive Sensitive Sensitive Sensitive 

Advantages 

Efficient method 

with reasonable 

coverage. 

- Useful in 

greyscale images 

and for image 

linearization. 

- Prior image 

information is 

not required. 

Classify the pixels 

of images based on 

their intensities. 

- Provide an exact 

image with clear 

edges. 

- A small number of 

seed points are 

required. 

- Multiple criteria at 

the same time. 

Limitations 

- The output 

depends on the 

segmentation 

partitions.  

- Fuzzy members 

identification is 

difficult. 

- It does not work 

on all MRI 

images because 

of the intensity 

variation. 

- Threshold 

selection: critical 

and difficult. 

The usage of 

pixels’ intensities 

for pixels 

separations may 

lead to the over-

segmentation. 

- This algorithm 

may lead to a 

gradient problem. 

- The local method 

with   no global 

views. 

Notes 
Better than  

K-Means 

Used in real-time 

applications 
 

Separates the image 

into regions with the 

same properties 

based on the given 

criteria. 
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4. LIVER CAD  

CAD systems were used as technological solutions to assist disease diagnosis using 

medical image analysis. CAD systems had two main subcategories, namely computer-aided 

detection (CADe) and computer-aided diagnosis (CADx). CADe systems are used to detect 

and segment abnormalities in organ tissues, while CADx schemes used to tell if the lesion is 

malignant or not. CAD systems had the advantage of being able to reduce medical errors 

and intra- and inter- radiologists’ variability. Hameed et al. [35] proposed an enhanced CAD 

system to assist the classification of lesions into malignant or benign on CT images. Grey 

level co-occurrence matrix (GLCM) was used to segment the liver from the rest of the 

abdominal CT scan. GLCM outputted features set in terms of pixels homogeneity, contrast 

and correlation with statistical features such as variance and mean. Those features were 

passed into a probabilistic neural network (PNN) classifier to tell if the segmented lesion was 

malignant or benign. This method was unable to deal with high order features.  

Chen et al. [36] proposed a method to diagnose liver with cirrhosis lesions. This 

method mainly focused on how liver and spleen texture changes can point to liver cirrhosis. 

They enhanced classification performance by constructing statistical shape models (SSM) for 

the liver, spleen, and their joint. Alahmer et al. [37] used FCM clustering in order to detect 

benign and malignant liver lesions in CT scans. They divided the region of interest into inner 

and outer lesion regions. To enhance the accuracy of the segmentation process, they put 

intensity, texture and shape properties into consideration. When features set is constructed 

successfully, the features set is served as input to SVM to be classified either as benign and 

malignant. The experimental results showed an enhancement in the classification accuracy 

using multiple region on interest (ROI) technique compared to the accuracy using a single 

ROI. 

Edwin et al. [38] proposed dividing the initial image into sub-images and 

implementing segmentation on the sub-images and then merging them to enhance lesion 

identification. This method first computed the segmentation function, and then it computes 

foreground markers. In the next step, the system computed the background markers. Further 

modifications were then implemented. At the end, it colors the output images of the 

watershed method as purple, green and red. Malar et al. [39] proposed a CAD method based 

on region growing for image segmentation. In this method, it will grow from the seed and 

further compared with the neighborhood values. This will result in liver region 

identification. After feature extraction and selection phases, the selected features are passed 

to the Hidden Markov Model (HMM) for classification.  

Das et al. [40] proposed a CAD system for cancer tissue detection on CT scans. Their 

proposed system was integrating adaptive thresholding to segment lesions with spatial 

fuzzy clustering to label segmented lesions. Adcock et al. [41] proposed a method to classify 

different liver lesions namely cysts, metastases, haemangiomas, hepatocellular, carcinomas, 

focal nodules, abscesses, and neuroendocrine neoplasms. Their proposed CAD system 

integrated 2D persistent homology, bottleneck matching, and SVM. The output of this 

method had the advantage of being suitable to be passed to machine learning algorithms. 

However, this method suffered from difficulties presented when large lesion pixels were 

normalized. This led to misclassifications.  
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Dankerl et al. [42] proposed a technique to identify lesions on CT scans based on 

lesions histological characteristics. At first, lesion regions were identified by radiologists. The 

system then acquires knowledge about histological features of identified lesions. When a 

new lesion was presented to the system, previous histological knowledge was retrieved, and 

the input lesion was then classified in comparison with that knowledge. Lesions were 

classified based on density and volume into benign/malignant. Then lesions were further 

classified into cyst, metastases, haemangiomas. Abd-Elaziz et al. [43] used the region 

growing method segmentation. In the beginning, seed point properties were compared with 

the neighboring pixels. Iteratively, the location of the lesion was specified.  

Li et al. [44] proposed a hybrid method to solve the classification issue for haptic 

lesions. This method starts with some prior knowledge (a radiologist identified lesion region 

on the CT scan images). This will fasten and ease the process of feature extraction. Features 

include spatial grey scale metrics such as dependency, run length, and different metrics.  

Multiclass SVM is used to classify haptic tissue into primary hepatic carcinoma, 

haemangioma, and normal tissue using one against all and one against one comparison.  

Huang et al. [45] proposed a technique to categorize lesions into either benign or 

malignant. The lesion region was segmented using the FCM Clustering method. Features 

were extracted using ast discrete curvelet transform from the segmented lesions. Feed 

forward classification method is then used to label lesions either to benign and malignant. 

Safdari et al. [46] proposed a method based on FCM to segment hepatic lesions. After 

segmentation, they used properties like lesions size, location, circularity, and the shortest 

distance from the liver border to lesions as features. Classification is implemented using a 

Naïve classifier, and lesions were labeled into either normal or abnormal slices. 

Entezarimaleki et al. [47] proposed an automatic lesion segmentation technique from the CT 

images. They used a sequential backward selection technique for feature selection and 

probabilistic neural networks to label lesions as hepatocellular carcinoma, 

cholangiocarcinoma, hemangioma, or hepatoadenoma. Table 4 summarizes the discussed 

CAD systems in terms of the contributions they offer, their advantages, limitations, and 

results. 
Table 4. Recent research works on liver CAD systems. 

Author Contribution Advantages Limitations Results 

Hameed 

et al. [35] 

An enhanced CAD 

system to assist the 

classification of lesions 

into malignant or 

benign on CT images. 

More adaptable and 

can classify lesions 

accurately when 

compared to the 

standard neural 

network. 

Unable to deal 

with high order 

features. 

 

Results showed 

a sensitivity of 

84% when the 

PNN classifier 

was used, and 

87% when 

PCNN was used. 

Chen et al. 

[36] 

A CAD system to 

diagnose liver with 

cirrhosis lesions. 

- Can achieve an 

accurate 

normal/abnormal 

classification 

- Can estimate the 

proceeding stage 

of cirrhotic cases. 

Unable to deal 

with large data 

sets. 

Results showed 

a classification 

accuracy of 88% 

in the case of a 

healthy liver, 

and 90% for the 

abnormal liver. 
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Table 4. Recent research works on liver CAD systems –Continued. 

Author Contribution Advantages Limitations Results 

Alahmer 

et al. [37] 

Used FCM clustering 

to detect benign and 

malignant liver lesions 

in CT scans. 

Higher classification 

accuracy when 

multiple regions of 

interest are used. 

This method 

was classifying 

limited types of 

liver lesions. 

Classification 

accuracy was 

98%. 

Edwin 

et al. [38] 

Enhanced lesion 

identification by 

partitioning original 

image and segmenting 

the sub-images and 

merging them. 

Simple, reliable and 

accurate method to 

segment the liver 

tumour from 

abdominal CT image 

- Threshold 

value choice. 

- Over/under 

segmentation. 

Results showed 

a sensitivity of 

93%. 

Malar 

et al. [39] 

A CAD method based 

on region growing and 

HMM for image 

segmentation. 

- Low time 

consumption 

- Enhanced diagnosis 

of confidence. 

 

Results showed 

a sensitivity of 

96.5%. 

Das 

et al. [40] 

A CAD system that 

integrated adaptive 

thresholding to 

segment lesions with 

spatial fuzzy clustering 

to label segmented 

lesions. 

No need for user 

intervention. 
 

Results showed 

an accuracy of 

89.15% and 

95.02% for MLP 

and C4.5 

classifiers, 

respectively. 

Adcock 

et al. [41] 

A method to classify 

liver lesions: cysts, 

metastases, 

haemangiomas, 

hepatocellular, 

carcinomas focal 

nodules, abscesses, and 

neuroendocrine 

neoplasms 

The output of this 

method had the 

advantage of being 

suitable to be passed 

to machine learning 

algorithms. 

Cannot handle 

lesions with 

large size. 

Results showed 

lesions 

identification 

precision as 

91.5%. 

Dankerl 

et al. [42] 

A method to identify 

lesions on CT scans 

based on lesions 

histological 

characteristics. 

Less processing time 

with reasonable 

confidence rates. 

Cannot handle 

lesions with 

large size. 

Results showed 

95.5% accuracy  

for lesions 

identification. 

Abd-

Elaziz 

et al. [43] 

A method to localize 

lesions based on 

region growing 

segmentation. 

Low segmentation 

time. 

Cannot handle 

lesions smaller 

than 1 cm. 

Results showed 

specificity > 

99%. 

Li 

et al. [44] 

A hybrid method to 

solve the classification 

issue for haptic 

lesions. 

- Flexible initialization 

- Low time 

consumption during 

convergence process 

- Robust 

segmentation. 

 

Area overlap 

error was in the 

range of 6.99-

12.75%. 
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5. CHALLENGES 

Despite the huge development in liver medical image analysis, there are some 

challenges which remain unsolved. The key challenges are related to either diagnosis or 

surgery medical field in terms of [48-53]:  

 CAD systems are sensitive to noise and fail to contour lesions accurately. They may 

also need long computational time with high implementation complexity. Also, 

creating an automatic segmentation method is still quite challenging. This is because 

the structure of the 2D liver CT scan differs from slice to another. The only common 

thing among all slices is that the liver is connected with many organs. Those organs 

make the process of segmenting the liver automatically complex and difficult since 

they may have the intensities of the same pixels as the liver.   

  Image enhancement: existing methods are sensitive to noise and fail to preserve the 

weak texture on an image. Those weak features can help to improve the detection of 

some liver lesions such as HCC by 40% [54]. 

 Features extraction method: none of the existing feature extraction algorithms 

guaranteed the expected accuracy with less computation (i.e., the accuracy increases 

when computation increases).  

 Registration: providing systems that can fuse liver scans from different modalities 

automatically is still challenging. Those systems will be advantageous to assist liver lesion 

diagnosis more accurately when one modality is not enough to identify lesion type.    

 Classification: all existing classification methods are using a supervised learning 

approach (i.e., the region of interest/ lesion is labeled in advance by the radiologist). 

Hence, the need for unsupervised classifier to be used in the absence of training 

samples is still a challenging task. 

6. FUTURE RESEARCH TRENDS  

The current research trends are focusing on: i) enhancing acquired liver scans,              

ii) providing high-performance automatic lesion segmentation system that can identify 

lesion area accurately and without consuming much time, iii) providing classification 

methods based on unsupervised learning methods, and classification methods that can 

classify all existing liver lesions, iv) providing features extraction methods that can provide 

unique and reasonable features which can best characterize liver lesions with lower 

computational time, v) providing segmentation methods that can handle features with high 

order, and vi) proposing segmentation methods that can segment large lesions (i.e., lesions 

size > 1 cm) without resulting in over/under segmentation.  

7. CONCLUSIONS 

This paper discussed different medical imaging modalities such as CT, MRI, PET, and 

US. It also declared which modality is the best choice with what lesions in Section 2. The 

liver segmentation process aims to divide the medical image into the background (i.e., liver) 

and foreground (i.e., lesions). The diagnosis step aims to extract dominant features from a 

lesion in the segmented image, and then classify those lesions into different disease classes 

such as cyst and HCC. A comparison between segmentation related work was provided with 
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a general comparison of available techniques. Liver lesions CAD systems were discussed, 

and a comparison among provided CAD methods was presented. Moreover, challenges 

facing the medical images’ analysis were introduced and futures research trends in this area 

were discussed. 
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